![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Такое ощущение, что грядёт тихая революция в области цифровой логики: переход на асинхронный дизайн. Любопытный, но малоизвестный факт: в 2012 году Интел предоставил стартапу Achronix свои заводы для производства асинхронных FPGA-чипов.
Есть несколько методологий асинхронного дизайна. Одна из них, под названием Null Convention Logic (сокращённо NCL), в качестве базового элемента использует так называемый пороговый вентиль. Обозначается он так:

Как и традиционный логический вентиль типа И или ИЛИ, он имеет несколько входов, один выход и, возможно, инверсию выхода. Кроме того, у него есть параметр M - порог срабатывания. К примеру, вентиль с порогом 2 переходит в активное состояние, когда как минимум два входа активны. В неактивное состояние пороговый вентиль переходит, когда все входы неактивны. Заметьте: вентиль с порогом M>1 обладает гистерезисом. Пока количество активных входов меньше порога, он сохраняет предыдущее состояние.
Из таких вентилей, применяя dual-rail протокол, можно строить цифровые логические схемы произвольной сложности. Например, так выглядит однобитный полный сумматор:

Для сравнения, полный сумматор на традиционной логике:

А теперь самое интересное. Знаете ли вы, как устроен нейрон, элементарный кирпичик нервной системы и мозга? Он имеет несколько отростков-дендритов (входов) и один аксон (выход). Для возбуждения нейрона нужно раздражение от нескольких дендритов (порог). Очень похоже на NCL-вентиль, не так ли?

Представьте, что через некоторое время, усилиями биохимиков и генетиков, можно будет выращивать "живые" нейронные сети заданной конфигурации. Если вы помните, в известной новелле Азимова про три закона робототехники, всё начиналось с изобретения позитронного мозга. Возможно, не так долго осталось ждать.
До сих пор разработка асинхронных логических схем осложнялась отсутствием возможности прототипирования и отладки их с использованием FPGA. Чипы Achronix могут поправить ситуацию.
Есть несколько методологий асинхронного дизайна. Одна из них, под названием Null Convention Logic (сокращённо NCL), в качестве базового элемента использует так называемый пороговый вентиль. Обозначается он так:

Как и традиционный логический вентиль типа И или ИЛИ, он имеет несколько входов, один выход и, возможно, инверсию выхода. Кроме того, у него есть параметр M - порог срабатывания. К примеру, вентиль с порогом 2 переходит в активное состояние, когда как минимум два входа активны. В неактивное состояние пороговый вентиль переходит, когда все входы неактивны. Заметьте: вентиль с порогом M>1 обладает гистерезисом. Пока количество активных входов меньше порога, он сохраняет предыдущее состояние.
Из таких вентилей, применяя dual-rail протокол, можно строить цифровые логические схемы произвольной сложности. Например, так выглядит однобитный полный сумматор:

Для сравнения, полный сумматор на традиционной логике:

А теперь самое интересное. Знаете ли вы, как устроен нейрон, элементарный кирпичик нервной системы и мозга? Он имеет несколько отростков-дендритов (входов) и один аксон (выход). Для возбуждения нейрона нужно раздражение от нескольких дендритов (порог). Очень похоже на NCL-вентиль, не так ли?

Представьте, что через некоторое время, усилиями биохимиков и генетиков, можно будет выращивать "живые" нейронные сети заданной конфигурации. Если вы помните, в известной новелле Азимова про три закона робототехники, всё начиналось с изобретения позитронного мозга. Возможно, не так долго осталось ждать.
До сих пор разработка асинхронных логических схем осложнялась отсутствием возможности прототипирования и отладки их с использованием FPGA. Чипы Achronix могут поправить ситуацию.